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Abstract

In this study we propose pseudospectral schemes for second-order wave equations subject to general bound-

ary conditions, including Dirichlet, Neumann, Robin, and materials interface conditions. The boundary

conditions are enforced in the schemes through a penalty method, and special attention is paid to analyzing

the stability of the schemes. In addition we discuss how to consistently impose boundary conditions at the

intermediate stages of the Runge-Kutta-Nyström method, to avoid order reduction. The proposed schemes

can be used in multidomain computational frameworks for simulating wave problems on complex domains.

Numerical validations are conducted, and the expected convergence is observed.
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1. Introduction

Many wave phenomena in general relativity, acoustics, elastodynamics, and electrodynamics are described

by second-order wave equations. By introducing auxiliary variables these second-order wave equations in

many cases can be rewritten as equivalent first-order systems of equations. For example, in elastodynamics

the stress-displacement equations can be rewritten as stress-velocity equations. As pointed out in [27]

the advantage of performing simulations based on first-order equations is that many numerical stability

issues related to first-order systems of equations have been addressed because of the mature development

of computational fluid dynamics. However, this order reduction approach has a drawback. It increases the

total number of equations to be solved and thus increases the computational load.

In wave simulations the problem domains may be large compared with the wavelength. Thus, simulating

a wave propagating for a long distance implies a long time integration. Consequently, the simulation quality
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may be affected because of the accumulation of numerical dispersion errors. High-order methods have been

shown to be more efficient than low-order methods in preserving low accumulation of dispersion errors during

long time integrations, especially for multidimensional space problems [26]. Since the 1990s many high-order

schemes have been developed for simulating large-scale wave problems.

In addition to the large domain issue, simulating waves in regions involving heterogeneous media is

important. To accurately model wave phenomena at materials interfaces, one must specify suitable boundary

conditions to relate field values on both sides of the interface. However, imposing boundary conditions

in numerical partial differential equations is delicate [13]. Generally speaking, great care must be taken

to construct consistent and stable boundary closures for high-order schemes in order to ensure accurate

modeling of wave dynamics at materials interfaces.

Many high-order schemes have been devised for complex wave simulations based on first-order systems

of equations. Here, we briefly discuss some high-order schemes for wave equations in second-order form.

A class of high-order difference schemes, satisfying certain summation-by-parts rules, has been constructed

for scalar wave equations [28–32], elastic wave equations [3, 6], and Einstein’s equations [33]. High-order

schemes based on spectral-element and multidomain pseudospectral methods have been designed for second-

order evolution equations [12, 25, 35], elastic wave equations [2, 7, 24, 39], and Einstein’s equations [37].

Discontinuous Galerkin finite-element methods have also been employed to devise schemes for acoustic wave

equations [1, 4, 16], Maxwell’s equations [17], and Einstein’s equations [8].

In this study we present high-order schemes for second-order wave equations in one- and two-dimensional

spaces. Our approach is based on the Legendre pseudospectral method [21, 23] in space and the Runge-

Kutta-Nyström (RKN) algorithm [34] in time. In the present schemes primitive boundary conditions are

enforced weakly through a penalty method [10, 11]. Special attention is paid to analyzing the stability of

these schemes subject to Dirichlet, Neumann, Robin, and materials interface boundary conditions. Through

conducting energy estimates we show that the proposed schemes can be made stable by properly choosing

the values of the penalty parameters. We use one- and two-dimensional space problems to illustrate the ideas

of our method in detail. In addition to the stable boundary treatments in space, we propose an approach for

consistently imposing time-dependent boundary conditions at the intermediate stages of the RKN method,

to avoid order reduction. The basic schemes can be used in a multidomain computational framework, similar

to the approaches in [9, 20, 22, 38], to solve wave equations in complex domains. Indeed, we have conducted

numerical experiments for wave problems in one- and two-dimensional spaces, and we have observed the

expected convergence results.

The rest of the paper is organized as follows. In Section 2 we present the schemes for the second-

order wave equations, and we discuss boundary treatments to ensure the stability and accuracy of the

schemes. Section 3 is devoted to the numerical validation of the methods for wave problems in one- and

two-dimensional spaces. Concluding remarks are given in Section 4.
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2. Formulations

In this section we introduce numerical schemes for one- and two-dimensional second-order waves and we

discuss boundary treatments of these schemes to ensure stability and accuracy.

2.1. Model 1D problems

Denote as (x, t) the space-time coordinate. Let D(1) = [xL, 0] and D
(2) = [0, xR]. We consider u(ν)(x, t)

for ν = 1, 2 satisfying the initial boundary value problem (IBVP):

ü(ν)(x, t) = a(ν)(x)
(
b(ν)(x)u′(x, t)

)′
, x ∈ D

(ν), t > 0, (1a)

u(ν)(x, 0) = f (ν)(x), u̇(ν)(x, 0) = h(ν)(x), x ∈ D
(ν), (1b)

BLu
(1)(xL, t) = gL(t), BL = αL − βL∂x, t > 0, (1c)

BRu
(2)(xR, t) = gR(t), BR = αR + βR∂x, t > 0, (1d)

u(1)(0, t) = u(2)(0, t), t > 0, (1e)

b(1)(0)∂xu
(1)(0, t) = b(2)(0)∂xu

(2)(0, t), t > 0. (1f)

The symbol · denotes the time differentiation, and ′ = ∂x denotes the differentiation with respect to the

space argument. For ν = 1,2, a(ν)(x) > 0 and b(ν)(x) > 0 are assumed smooth functions, and f (ν) and h(ν)

are the initial data of u(ν) and u̇(ν), respectively. BLu
(1) = gL(t) and BRu

(2) = gR(t) are the boundary

conditions applied at the end points xL and xR, respectively. BL and BR are termed boundary operators,

and they are parameterized by non-negative real numbers, αL, βL, αR, and βR. Equations (1e)–(1f) are the

interface boundary conditions relating field values on both sides of the interface at x = 0. For homogeneous

boundary conditions, gL = gR = 0, the problem leads to an energy estimate

2∑

ν=1

∫

D(ν)

(u̇(ν))2

a(ν)
+ b(ν)(∂xu

(ν))2 dx ≤
2∑

ν=1

∫

D(ν)

(h(ν))2

a(ν)
+ b(ν)(∂xf

(ν))2dx

+
αL

βL

(
b(1)(f (1))2

) ∣∣∣
xL

+
αR

βR

(
b(2)(f (2))2

) ∣∣∣
xR

, (2)

provided that αL/βL ≥ 0 and αR/βR ≥ 0.

2.2. Pseudospectral methods for 1D wave equations

We now present stable boundary treatments for one-dimensional pseudospectral schemes for second-order

wave equations.

2.2.1. Legendre pseudospectral method

Let N be a positive integer and I = [−1, 1]. Denote as ξ = {ξi}Ni=0 the set of Legendre-Gauss-Lobatto

(LGL) grid points on I. These points are roots of the polynomial (1 − ξ2)P ′

N (ξ), where PN (ξ) is the Nth-

degree Legendre polynomial. We adopt the Legendre pseudospectral method to approximate a function u(ξ)
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and its derivative defined on I as follows,

u(ξ) ≈ INu(ξ) =
N∑

j=0

lj(ξ)u(ξj), u′(ξ) ≈ (INu(ξ))′ =
N∑

j=0

l′j(ξ)u(ξj),

where IN is the interpolation operator and lj(ξ) = − (1−ξ2)P ′

N (ξ)
N(N+1)(ξ−ξj)PN (ξj)

for j = 0, 1, ..., N are the Lagrange

basis polynomials based on the LGL grid points, satisfying lj(ξi) = δij , with δij being the usual Kronecker

delta function. Associated with a set of LGL points is a set of quadrature weights, denoted by ω = {ωi}Ni=0,

and we have the quadrature integration formula

∫

I

f(ξ) dξ =

N∑

i=0

f(ξi)ωi, (3)

provided that f(ξ) is a polynomial with degree at most 2N − 1.

To apply the approximation method for functions defined on a general interval, say, D = [xL, xR], we

introduce a coordinate transformation to map I onto D. For simplicity and without losing generality, we

consider a linear coordinate mapping x(ξ) and its inverse ξ(x) as

x(ξ) = xL + J(ξ + 1), ξ(x) = −1 + (x− xL)/J, J = (xR − xL)/2,

with J being the Jacobian of the mapping. Then, we can approximate u(x) and u′(x) defined on D as

u(x) ≈ INu(x) =

N∑

j=0

Lj(x)u(xj), u′(x) ≈ (INu(x))′ =

N∑

j=0

L′

j(x)u(xj),

where Lj(x) = lj(ξ(x)), L
′

j(x) = l′j(ξ)/J , and xj = x(ξj) for j = 0, 1, ..., N are the LGL grid points on D.

The integration quadrature rule, Eq. (3), through coordinate transformation becomes

∫

D

u(x)dx =

N∑

i=0

u(xi)Jωi, (4)

provided that u is a polynomial with degree at most 2N − 1. We have the following rules based on the

quadrature formula for further use. Let u and v be polynomials of degree at most N . So, uv′ and u′v are

polynomials of degree at most 2N − 1. Then,

N∑

i=0

Jωiu(xi)v
′(xi) = u(xN )v(xN )− u(x0)v(x0)−

N∑

i=0

Jωiu
′(xi)v(xi), (5a)

N∑

i=0

Jωiu(xi)(IN (v(x)Lj(x)))
′
∣∣
xi

= u(xN )v(xN )δjN − u(x0)v(x0)δj0 − Jωjv(xj)u
′(xj). (5b)

Equation (5a) is a summation-by-parts rule mimicking the integration-by-parts formula. It is obtained from

converting the summation by its integral representation, performing integration by parts, and then rewriting

the resultant integral by its equivalent discrete summation. Equation (5b) is obtained by substituting

v′(x) = (IN (v(x)Lj(x)))
′ into Eq. (5a) and then employing Lj(xi) = δij .

For further details of the Legendre pseudospectral method we refer the reader to [23].
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2.2.2. Basic scheme and stable boundary treatments

We now discuss stable boundary treatments at x = xL and x = xR described by Eqs. (1c)–(1d). For

simplicity we omit the subscript (ν) in Eqs. (1a)–(1d) and consider u(x, t), x ∈ D = [xL, xR], satisfying

Eqs. (1a)-(1d). To numerically solve the problem by Legendre pseudospectral method on the interval D, we

collocate N +1 LGL grid points, xj for j = 0, 1, ..., N and denote the field values at the grid points by vj(t).

We seek a numerical solution of the form

v(x, t) =

N∑

j=0

Lj(x)vj(t),

satisfying the collocation equations

1

ai
v̈i =(biv

′

i − biLN (xi)τR(BRvN − gR) + biL0(xi)τL(BLv0 − gL))
′

− σRbN
JωN

LN (xi)(BRvN − gR),−
σRb0
Jω0

L0(xi)(BLv0 − gL), i = 0, 1, ..., N, (6a)

vi =fi, v̇i = hi, i = 0, 1, ..., N, (6b)

where we have used ai = a(xi), bi = bi(xi), fi = f(xi), and hi = h(xi), and where τL, τR, σL, and σR are

penalty parameters whose values will be determined later to ensure the stability of the scheme.

We now conduct a stability analysis. It is sufficient to consider homogeneous boundary conditions,

namely, gL = gR = 0. Multiplying v̇iJωi to Eq. (6a) and summing the resultants, we have

1

2

d

dt

N∑

i=0

v̇2i
ai

Jωi =

N∑

i=0

Jωiv̇i(biv
′

i)
′ − τR(BRvN )

N∑

i=0

Jωiv̇i(biLN(xi))
′ + τL(BLv0)

N∑

i=0

Jωiv̇i(biL0(xi))
′

− σRbN v̇N (BRvN )− σLb0(v̇0)(BLv0). (7)

Let us focus on the first summation term on the right-hand side of Eq. (7). We notice that v̇i(biv
′

i)
′ are

the values of the polynomial v̇(x, t)(IN [b(x)v′(x, t)])′ at the grid points. Since v̇(IN [bv′])′ is a polynomial of

degree 2N − 1, we invoke Eq. (5a) and obtain

N∑

i=0

Jωiv̇i(biv
′

i)
′ =bN v̇Nv′N − b0v̇0v

′

0 − Jω0b0v̇
′

0v
′

0 − JωNbN v̇′Nv′N − 1

2

d

dt

N−1∑

i=1

Jωibi(v
′

i)
2. (8)

Following a similar argument, we apply Eq. (5b) to evaluate the other two summation terms on the right-

hand side of Eq. (7). The results are

−τR(BRvN )

N∑

i=0

Jωiv̇i(biLN(xi))
′ = −τR(αRvN + βRv

′

N )(bN v̇N − JωNbN v̇′N ), (9)

τL(BLv0)

N∑

i=0

Jωiv̇i(biL0(xi))
′ = τL(αLv0 − βLv

′

0)(−b0v̇0 − Jω0b0v̇
′

0). (10)
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Substituting Eqs. (8)–(10) into Eq. (7), we obtain an energy rate equation

Ė = 2ṙTLMLrL + 2ṙTLMRrR, (11)

where E is the energy defined as

E =

N∑

i=0

Jωibi(v
′

i)
2 +

N−1∑

i=1

Jωibi(v
′

i)
2 +

(
1− c−1

)
Jω0b0(v

′

0)
2 +

(
1− c−1

)
JωNbN (v′N )2, c ≥ 1,

rL and rR are vectors given as rL(t) =
√
b0[v0, −v′0]

T and rR(t) =
√
bN [vN , v′N ]T , where the superscript T

denotes the vector transpose, and ML and MR are matrices given explicitly as

M =



 −α(τ + σ) 1− β(τ + σ)

ατJω −(1/c− βτ)Jω



 , ω =
2

N(N + 1)
. (12)

We have omitted the associated subscripts L and R for clarity. As suggested in [30–32], if we can choose

the values of the penalty parameters τ and σ such that M is symmetric semi-negative definite, then we

have 2ṙTMr = d(rTMr)/dt. As a consequence, integrating Eq. (11) with respect to t and employing the

symmetric semi-negative definite property of M , we arrive at a bounded energy estimate of

E(t) ≤ E(0)− (rTLMLrL)|t=0 − (rT
RMRrR)|t=0,

implying the stability of the scheme.

We now provide a set of penalty parameters such that M is symmetric semi-negative definite. Let

τ =
1

αJω + (1 + γ(c− 1))β
, σ = γ(c− 1)τ, γ ≥ 1, (13)

where γ is termed the penalty strength parameter. Then, M becomes symmetric:

M =


 −ατ(1 + γ(c− 1)) ατJω

ατJω −c−1Jωτ(αJω + β(c− 1)(γ − 1))


 .

Denoted by µ = µ1 and µ = µ2, the eigenvalues of M satisfy the characteristic equation

µ2 + pµ+ q = 0, with





p = (α(1 + γ(c− 1)) + c−1(αJω + β(c− 1)(γ − 1))Jω)τ

q = c−1ατ(γ − 1)(c− 1)Jω
.

Notice that −p = µ1 + µ2 and q = µ1µ2. Hence, for c ≥ 1 and γ ≥ 1 we have −p ≤ 0 and q ≥ 0, indicating

that both µ1 and µ2 are nonpositive. We conclude that M is semi-negative definite.

Before proceeding further we comment on the present way of imposing boundary conditions.

Comment 1. In order to ensure the stability of the scheme Eq. (6), it is sufficient to consider c = 1, which

leads to σ = 0. This approach leads to penalizing boundary conditions at every collocation equation. If

the boundary condition to be enforced is of Neumann or Robin type, one can alternatively take τ = 0 and
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σ = 1/β, and the resulting matrix M deduced from Eq. (12) is also symmetric semi-negative definite. For

this case the penalized boundary conditions are introduced only to the two end-point collocation equations.

However, as we will see soon from the eigen-spectrum analysis, the latter approach leads to a smaller time

step for stable computations when an explicit time-marching scheme is used, and this is a drawback.

Comment 2. The reason for considering c 6= 1, particularly for c = 2 and c = 3, is the following. The

stability analysis for the one-dimensional scheme has led to a matrix M associated with an end point, and

for stable computations we need to make the matrix M symmetric semi-negative definite, by providing

suitable values of τ and σ. We will soon show that for two-dimensional problems a similar energy analysis

leads to a family of matrices associated with domain boundary grid points, and the M matrix associated

with a quadrilateral vertex is similar to the matrix M given in Eq. (12) with c = 2.

Comment 3. In this study we impose boundary conditions in the primitivity form. For first-order hyperbolic

systems of equations it is preferred to impose characteristic boundary conditions as suggested in [13]. For

second-order hyperbolic wave equations well-posed characteristic boundary conditions [18, 19] have been

derived, and the theory has been applied to construct a pseudospectral scheme for simulating black-hole

activities [37]. The differences between imposing characteristic and primitivity boundary conditions require

further investigation.

2.2.3. Eigenvalue spectra and penalty parameters

For homogeneous boundary conditions, Eq. (6a) leads to a system of second-order ordinary differential

equations with a general solution as follows:

ü(t) = Lu(t), u =

N∑

i=0

ζi exp(
√

λi t), (14)

where u(t) = [u0(t), u1(t), ..., uN (t)]T , L is a matrix operator resulting from the right-hand side expression

of Eq. (6a), and λi and ζi are the eigenvalues and the associated eigenvectors of the matrix operator L,
respectively.

We have shown that the scheme has a bounded energy estimate. This indicates that all the eigenvalues

of L are real and nonpositive, which can be validated by calculating the eigenvalues of L. Figure 1 presents

the eigenvalue spectra of L for boundary conditions imposed at both end points being of the same type

(both Dirichlet or both Neumann), for various values of N . The penalty parameters τ and σ are given by

Eq. (13) with c = 1 and γ = 1. Indeed, the results show that the eigenvalues of L are real and semi-negative.

Later, we will use the Runge-Kutta-Nyström method to advance numerical solutions in time. To maintain

stable computations, we require some knowledge of the spectral radius of the matrix L, denoted by ρ(L),
as a function of N . Here we consider only the matrix operators L resulting from Eq. (6) with boundary

conditions imposed at both end points being of the same type. The L operators corresponding to Dirichlet,
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Figure 1: Eigenvalue spectra of L corresponding to Dirichlet (left column) and Neumann (right column) boundary conditions

applied at both end points, for various values of N .

Neumann, and two Robin cases parameterized by (α, β) = (1, 0.1) and (α, β) = (1, 0.01) are investigated in

this study. The square root of the spectral radius of L is designated as Λ(L), that is, Λ =
√
ρ(L). We are

interested in how the penalty parameters, τ and σ, affect Λ(L). Notice that τ and σ in Eq. (13) involve

other parameters, c ≥ 1 and γ ≥ 1. Here we use c and γ to characterize τ and σ, and we calculate Λ(L)
as a function of N . For convenience, these discrete values are plotted and connected as a curve, termed the

Λ-curve of L.
Figure 2(a) presents the Λ-curves of the L operators corresponding to the Dirichlet, Neumann, and two

Robin cases, for c = 1 and γ = 1. The results show that the two Robin case curves lie between the Dirichlet
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case curve and the Neumann case curve and that for both the Dirichlet and Neumann cases, Λ(L) grows

quadratically as N increases. In addition, for each N the value of the Neumann case Λ(L) is smaller than

that of the Dirichlet case Λ(L) approximately by a factor of 2. We therefore will use the Dirichlet case Λ(L)
as a conservative guideline to estimate stable time steps of O(N−2).

In Fig. 2(b) we present the Λ-curves corresponding to the Neumann and two Robin cases, for τ = 0 and

σ = 1/β. For this set of penalty parameters only the Neumann or Robin condition can be imposed, and the

penalized boundary conditions appear only at the two end collocation equations. The figure shows that the

Neumann case Λ-curve also scales like N2. For a given N , however, the value of the Neumann case Λ(L)
shown in Fig. 2(b) is larger than that of the Neumann case Λ(L) shown in Fig. 2(a), approximately by a

factor of 2. We therefore will not consider using τ = 0 and σ = 1/β to enforce boundary conditions because

this set of parameters results in a smaller time step for stable computations.

In Fig. 2(c) and Fig. 2(e) we present the Λ-curves of the considered L operators using (c, γ) = (2, 1) and

(c, γ) = (3, 1), respectively. Considering the curves in Fig. 2(a) as a reference, we observe that the Λ-curves

move upward as the value of c increases. These results indicate that increasing the value of c increases the

stiffness of the L operator and thus reduces the maximum stable time step. However, we cannot avoid using

c > 1 for multidimensional space problems, as will be shown later. Hence, we use c = 1 whenever possible.

Figures 2(d) and 2(f) present the Λ-curves of the considered L operators using (c, γ) = (2, 2) and

(c, γ) = (3, 2), respectively. Compared with the curves shown in Fig. 2(c) and Fig. 2(e), the Λ-curves also

move upward as the value of γ increases. This result similar to the situation of increasing the value of c.

Hence, we use γ = 1 whenever possible.

2.2.4. Two-domain scheme and penalty interface boundary condition

We now discuss an approach for imposing interface boundary conditions. Let us return to the IBVP

described by Eqs. (1a)–(1f). Notice that the interface boundary conditions Eqs. (1e)-(1f) can be rewritten

as expressions similar to Eqs. (1c)–(1d), by introducing the following interface boundary operators and the

associated boundary constraints on both sides of the interface x = 0:

on D
(1) side Bv(1)|x=0− =

[
v(1) + β(1)b(1)

(
v(1)

)′] ∣∣∣
x=0−

, g =

[
v(2) + β(1)b(2)

(
v(2)

)′] ∣∣∣
x=0+

, (15a)

on D
(2) side Bv(2)|x=0+ =

[
v(2) − β(2)b(2)

(
v(2)

)′] ∣∣∣
x=0+

, g =

[
v(1) − β(2)b(1)

(
v(1)

)′] ∣∣∣
x=0−

, (15b)

where β(1) and β(2) are positive real numbers whose values will be determined later in the stability analysis.

In the above expressions, the interface boundary conditions are simply linear combinations Eqs. (1e) and

(1f) parameterized by β(1) and β(2), which can be viewed as defining Robin-type boundary operators and

suitable boundary functions on both sides of the interface.

We now present the scheme for the problem described by Eqs. (1a)–(1f). We introduce linear coordinate

mapping functions to map D
(ν) onto I. The corresponding Jacobian of the coordinate transformations are
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Figure 2: Square roots of the spectral radii of L as functions of N . The penalty parameters τ and σ are computed by Eq. (13)

using different values of c and γ. (a): (c, γ) = (1, 1). (b): τ = 0, σ = 1/β. (c): (c, γ) = (2, 1). (d): (c, γ) = (2, 2). (e):

(c, γ) = (3, 1). (f): (c, γ) = (3, 2).

denoted by J (ν). On D
(ν) we collocate N (ν) + 1 LGL grid points, x

(ν)
j for j = 0, 1, ..., N (ν). The associated

quadrature weights and the Lagrange basis polynomials are denoted by ω
(ν)
i and L

(ν)
i (x(ν)), respectively, for
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0 ≤ i ≤ N (ν). We seek numerical solutions v(ν) for ν = 1, 2 of the form

v(ν)(x(ν), t) =

N(ν)∑

j=0

L
(ν)
j (x(ν))v

(ν)
j (t), (16)

satisfying the collocation equations

v̈
(1)
i

a
(1)
i

=
(
b
(1)
i (v

(1)
i )′

)′
− τ (1)

(
b
(1)
i L

(1)

N(1)(x
(1)
i )
)′ ((

v
(1)

N(1) − v
(2)
0

)
+ β(1)

(
b
(1)

N(1)(v
(1)

N(1))
′ − b

(2)
0 (v

(2)
0 )′

))

−
σ(1)b

(1)

N(1)L
(1)

N(1)(x
(1)
i )

J (1)ω
(1)

N(1)

((
v
(1)

N(1) − v
(2)
0

)
+ β(1)

(
b
(1)

N(1)(v
(1)

N(1))
′ − b

(2)
0 (v

(2)
0 )′

))
, i = 0, ..., N (1) (17a)

v̈
(2)
i

a
(2)
i

=
(
b
(2)
i (v

(2)
i )′

)′
+ τ (2)

(
b
(2)
i L

(2)
0 (x

(2)
i )
)′ ((

v
(2)
0 − v

(1)

N(1)

)
− β(2)

(
b
(2)
0 (v

(2)
0 )′ − b

(1)

N(1)(v
(1)

N(1))
′

))

− σ(2)b
(2)
0 L

(2)
0 (x

(2)
i )

J (2)ω
(2)
0

((
v
(2)
0 − v

(1)

N(1)

)
− β(2)

(
b
(2)
0 (v

(2)
0 )′ − b

(1)

N(1)(v
(1)

N(1))
′

))
, i = 0, ..., N (2) (17b)

v
(ν)
i (0) =f

(ν)
i , v̇

(ν)
i (0) = h

(ν)
i , i = 0, 1, ..., N (ν). (17c)

Because the boundary conditions at the outer boundaries are enforced in the same way as in Eq. (6a), we

have omitted them for clarity.

We now focus on determining suitable values of β(ν), τ (ν), and σ(ν), such that the scheme is stable.

Multiplying v̇
(1)
i J (1)ω

(1)
i and v̇

(2)
i J (2)ω

(2)
i to Eq. (17a) and Eq. (17b), respectively, summing the resultants,

invoking the quadrature rules, and conducting integration by parts, we obtain an energy rate equation:

Ė(t) = 2ṙTMr,

where E(t) is the energy defined as

E(t) =

2∑

ν=1




N(ν)∑

i=0

(v̇
(ν)
i )2

a
(ν)
i

J (ν)ω
(ν)
i +

N(ν)
−1∑

i=1

b
(ν)
i ((v

(ν)
i )′)2J (ν)ω

(ν)
i





+
(
1− c−1

)
b
(1)

N(1)

(
(v

(1)

N(1))
′

)2
J (1)ω

(1)

N(1) +
(
1− c−1

)
b
(2)
0

(
(v

(2)
0 )′

)2
J (2)ω

(2)
0 , c ≥ 1,

r is a vector defined as r =
[
v
(1)

N(1) , v
(2)
0 , b

(1)

N(1)(v
(1)

N(1))
′, b

(2)
0 (v

(2)
0 )′

]T
, and M is a matrix given as

M =




−τ̃ (1)b(1) τ̃ (1)b(1) 1− τ̃ (1)β(1)b(1) τ̃ (1)β(1)b(1)

τ̃ (2)b(2) −τ̃ (2)b(2) −τ̃ (2)β(2)b(2) −(1− τ̃ (2)β(2)b(2))

τ (1)ω̄(1) −τ (1)ω̄(1) −(1/(cb(1))− τ (1)β(1))ω̄(1) −τ (1)ω̄(1)β(1)

τ (2)ω̄(2) −τ (2)ω̄(2) −τ (2)β(2)ω̄(2) −(1/(cb(2))− τ (2)β(2))ω̄(2)



, (18)

with

τ̃ (ν) = τ (ν) + σ(ν), ω̄(ν) =
2J (ν)

N (ν)(N (ν) + 1)
, ν = 1, 2.
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To ensure stable imposition of the interface boundary conditions, we seek suitable values of β(ν), τ (ν), and

σ(ν) such that the matrix M is symmetric semi-negative definite. Let

β(1) =
ω̄(2)

(1 + γ(c− 1))b(2)
, τ (1) =

b(2)

b(2)ω̄(1) + b(1)ω̄(2)
, σ(1) = γ(c− 1)τ (1), γ ≥ 1

β(2) =
ω̄(1)

(1 + γ(c− 1))b(1)
, τ (2) =

b(1)

b(2)ω̄(1) + b(1)ω̄(2)
, σ(2) = γ(c− 1)τ (2), γ ≥ 1.

Then M becomes symmetric as

M = m




−1 1 β(2) β(1)

1 −1 −β(2) −β(1)

β(2) −β(2) −(d1β
(2) + d2β

(1))β(2) −β(1)β(2)

β(1) −β(1) −β(1)β(2) −(d1β
(1) + d2β

(2))β(1)



, (19)

with

m =
(1 + γ(c− 1))b(1)b(2)

b(2)ω̄(1) + b(1)ω̄(2)
, d1 =

1 + γ(c− 1)

c
, d2 =

(γ − 1)(c− 1)

c
.

We claim that the eigenvalues of M are nonpositive for γ ≥ 1 and c ≥ 1. This fact can be verified through

examining the signs of the eigenvalues of m−1M instead, since m > 0. The eigenvalues of m−1M satisfy

the characteristic equation

µ(µ3 +Aµ2 +Bµ+ C) = 0,

with

A = 2 +

2∑

ν=1

(β(ν))2 + d2

(
2∑

ν=1

β(ν)

)2

, B = d2

(
2∑

ν=1

β(ν)

)2

(2 + d1β
(1)β(2)), C = 2d2β

(1)β(2)

(
2∑

ν=1

β(ν)

)2

.

We immediately know that 0 is an eigenvalue and the other three eigenvalues satisfy the cubic polynomial.

Notice that for γ ≥ 1 and c ≥ 1 the parameters β(1), β(2), d1, and d2 are positive. Consequently, the

coefficients A, B, and C in the cubic polynomials are non-negative. Employing Descartes’ rule of signs we

conclude that the cubic polynomial has no positive roots. Therefore, M is symmetric semi-negative definite,

and we obtain an energy estimate

E(t) ≤ E(0)− (rMr)|t=0,

implying that the scheme is stable.

2.3. Multidimensional scheme

We now construct a scheme for wave equations for two-dimensional space problems.
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Figure 3: Mapping of a domain Ω smoothly mapped onto I2 = [−1, 1]2.

2.3.1. Treatment for exterior boundary conditions

Denote as x = (x, y) and t the space and time coordinates, respectively. Without losing generality

consider a domain Ω that can be mapped onto a square domain I
2 = [−1, 1]2 with a coordinate system

termed ξ = (ξ, η), as shown in Fig. 3. Consider u(x, t) satisfying the IBVP:

ü(x, t) = a(x)∇ · (b(x)∇u(x, t)), x ∈ Ω, t > 0, (20a)

u(x, 0) = f(x), u̇(x, 0) = h(x), x ∈ Ω, (20b)

Bu(x, t) = α(x)u+ β(x)n · ∇u = g(t), x ∈ ∂Ω, t > 0, (20c)

where a(x) > 0 and b(x) > 0 are smooth functions and α(x) > 0 and β(x) > 0 are functions defined on the

domain boundary ∂Ω. For homogeneous boundary conditions the problem leads to an energy estimate

∫

Ω

u̇2(x, t)

a(x)
+ b(x)|∇u(x, t)|2dx ≤

∫

Ω

h2(x)

a(x)
+ b(x)|∇f(x)|2dx+

∮

Ω

α(x)

β(x)
f2(x)dx.

To numerically solve the problem, we first rewrite the problem in a curvilinear coordinate. Employing the

transfinite blending method [14, 15], we construct a one-to-one correspondence coordinate transformation,

x = x(ξ) and its inverse ξ = ξ(x), to associate Ω and I
2. The transformation metric variables are related

as follows:

∂x

∂ξ
=




∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η



 ,
∂ξ

∂x
=




∂ξ
∂x

∂ξ
∂y

∂η
∂x

∂η
∂y



 ,
∂x

∂ξ

∂ξ

∂x
= I,

with I being the identity matrix.

Employing the coordinate mapping, we transform the variables in Eqs. (20a)–(20c). Here we use the

expression u(ξ, η, t) = u(x(ξ), t) to simplify the notations, and likewise for the other variables, a, b, f , h, α,
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and β. The wave equation in the curvilinear coordinate becomes

ü =
a

J

(
∂(J∇ξ · F̃ )

∂ξ
+

∂(J∇η · F̃ )

∂η

)
, F̃ = b∇u = b

(
∇ξ

∂u

∂ξ
+∇η

∂u

∂η

)
,

where J is the Jacobian of the coordinate transformation.

To solve the problem defined on the square domain I
2, we introduce M + 1 and N + 1 LGL grid points,

ξi for i = 0, 1, ...,M and ηj for j = 0, 1, ..., N , along the ξ and η axes, respectively. The quadrature weights

associated with the grid points ξi and ηj are denoted by ωξ
i and ωη

j , respectively. Based on the grid points

ξi and ηj , we denote the Lagrange interpolations functions by lξi (ξ) and lηj (ξ), respectively. Employing

these basis functions and the quadrature weights, we define the two-dimensional quadrature weights and the

two-dimensional Lagrange basis polynomials as ωi,j = ωξ
i ω

η
j and Li,j(ξ, η) = lξi (ξ)l

η
j (ξ), respectively.

Let vi,j(t) be the field values at the grid points. We seek an approximation v(ξ, η, t) of the form

v(ξ, η, t) =

N∑

j=0

M∑

i=0

Li,j(ξ, η)vi,j ,

satisfying the collocation equations

v̈i,j =
ai,j
Ji,j

(
∂(bJ∇ξ · F )

∂ξ

∣∣∣
i,j

+
∂(bJ∇η · F )

∂η

∣∣∣
i,j

+Qi,j

)
,

i = 0, 1, ...,M,

j = 0, 1, ..., N,
(21a)

vi,j(0) = fi,j , v̇i,j(0) = hi,j ,
i = 0, 1, ...,M,

j = 0, 1, ..., N,
(21b)

where F and Q are

F (ξ, η) = ∇v(ξ, η)−
4∑

s=1

p[s](ξ, η), Q(ξ, η) =
4∑

s=1

q[s](ξ, η), (22)

with p[s] being the penalized boundary conditions enforced along the edges given as

p[1](ξ, η) =
N∑

j′=0

L0,j′(ξ, η)
(
τ [1]n[1](B[1]v − g(t))

) ∣∣∣
0,j′

, (23a)

p[2](ξ, η) =

N∑

j′=0

LM,j′(ξ, η)
(
τ [2]n[2](B[2]v − g(t))

) ∣∣∣
M,j′

, (23b)

p[3](ξ, η) =

M∑

i′=0

Li′,0(ξ, η)
(
τ [3]n[3](B[3]v − g(t))

) ∣∣∣
i′,0

, (23c)

p[4](ξ, η) =
M∑

i′=0

Li′,N (ξ, η)
(
τ [4]n[4](B[4]v − g(t))

) ∣∣∣
i′,N

, (23d)

and q[s] being the penalized boundary conditions imposed at the vertices given as

q[1](ξ, η) =
L0,0(ξ, η)

ωξ
0

(
bJ |∇ξ|n[1] · p[3]

)
|0,0 +

L0,N (ξ, η)

ωξ
0

(
bJ |∇ξ|n[1] · p[4]

)
|0,N

− L0,0(ξ, η)

ωξ
0

σ
[1]
0,0

(
bJ |∇ξ|(B[1]v − g)

)
|0,0 −

L0,N (ξ, η)

ωξ
0

σ
[1]
0,N

(
bJ |∇ξ|(B[1]v − g)

)
|0,N , (24a)
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q[2](ξ, η) =
LM,0(ξ, η)

ωξ
M

(
bJ |∇ξ|n[2] · p[3]

)
|M,0 +

LM,N(ξ, η)

ωξ
M

(
bJ |∇ξ|n[2] · p[4]

)
|M,N

− LM,0(ξ, η)

ωξ
M

σ
[2]
M,0

(
bJ |∇ξ|(B[2]v − g)

)
|M,0 −

LM,N(ξ, η)

ωξ
M

σ
[2]
M,N

(
bJ |∇ξ|(B[2]v − g)

)
|M,N , (24b)

q[3](ξ, η) =
L0,0(ξ, η)

ωη
0

(
bJ |∇η|n[3] · p[1]

)
|0,0 +

L0,N (ξ, η)

ωη
0

(
bJ |∇η|n[3] · p[2]

)
|M,0

− L0,0(ξ, η)

ωη
0

σ
[3]
0,0

(
bJ |∇η|(B[3]v − g)

)
|0,0 −

L0,N (ξ, η)

ωη
0

σ
[3]
M,0

(
bJ |∇η|(B[3]v − g)

)
|M,0, (24c)

q[4](ξ, η) =
L0,N (ξ, η)

ωη
N

(
bJ |∇η|n[4] · p[1]

)
|0,N +

LM,N (ξ, η)

ωη
N

(
bJ |∇η|n[4] · p[2]

)
|M,N

− L0,N(ξ, η)

ωη
N

σ
[4]
0,N

(
bJ |∇η|(B[4]v − g)

)
|0,N − LM,N(ξ, η)

ωη
N

σ
[4]
M,N

(
bJ |∇η|(B[4]v − g)

)
|M,N . (24d)

The four edges, ξ = −1, ξ = 1, η = −1 and η = 1, of a quadrilateral domain are labeled by s = 1, 2, 3,

and 4, respectively. Variables defined on edge s are then labeled by the superscript [s]; for example, n[s]

denotes the outward-pointing unit vector function normal to edge s. As shown in Eq. (22), we have two sets

of penalty boundary conditions, p and q. Notice that q vanishes at every point except at the four vertices.

We now conduct an energy estimate to determine the values of τ [s] and σ[s]. Multiplying v̇i,jJi,j/ai,jωi,j

to Eq. (21), summing the resultants, applying the quadrature rule dimension by dimension, and doing

tedious calculations, we have an energy rate equation

1

2
Ė = S[1] + S[2] + S[3] + S[4],

where E is the energy defined as

E =

M∑

i=0

N∑

j=0

ωi,j
Jv̇2

a

∣∣∣
i,j

+

M−1∑

i=1

N−1∑

j=1

ωi,j(b∇v · ∇v)
∣∣∣
i,j

and S[ν] for ν = 1, 2, 3, 4 are the resulting boundary terms collected according to the edges.

We now show how to determine the values of the penalty parameters on the edge ξ = −1 such that the

scheme is stable. The explicit form of S[1] is given as

S[1] =
N∑

j=0

ωη
j (J |∇ξ|)|0,j ṙT

j M jrj ,

where rj are vectors defined as

rj =
√
b0,j

[
v0,j , (n

[1] · ∇v)|0,j , |∇sv0,j |
]T

, ∇sv = ∇v − n[1](n[1] · ∇v)

and M j are matrices given as

M j =




−α(τ0,j + δ0,jσ0,0 + δN,jσ0,N ) 1− β[τ0,j + δ0,jσ0,0 + δN,jσ0,N ] 0

ατ |∇ξ0,j |−1ωξ
0 −(|∇ξ|−1ωξ

0)(1/cj − βτ) 0

0 0 −|∇ξ|−1ωξ
0/cj


 .
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Similar to the one-dimensional analysis, to ensure the stability of the scheme, we need to choose for each j a

set of τ and σ such that the upper left 2× 2 submatrix of M j is symmetric semi-negative definite, because

−ωξ
0/cj < 0. If we replace the variables |∇ξ|−1 and ωξ in M j by J and ω, respectively, we observe that for

each j the upper left 2× 2 submatrix of M j is identical to the matrix M shown in Eq. (12). Hence, we can

make the matrices M j symmetric semi-negative definite, provided that

τ0,j =
1

αωξ
0 |∇ξ|−1 + (1 + γ(cj − 1))β

, j = 0, 1, ..., N, (25a)

σ0,j = γ(cj − 1)τ0,j j = 0, N. (25b)

The penalty parameters defined on the rest of the three edges can be obtained with a similar approach. We

summarize the results in Table 1.

Table 1: Pointwise values of the penalty parameters. γ ≥ 1. cj = 2 for j = 0, N and cj = 1 otherwise. ci = 2 for i = 0,M and

ci = 1 otherwise.

Edge 1/τ σ

ξ = −1 α0,jω
ξ
0|∇ξ|−1

0,j + (1 + γ(cj − 1))β0,j j = 0, ..., N γτ0,j j = 0, N

ξ = +1 αM,jω
ξ
M |∇ξ|−1

M,j + (1 + γ(cj − 1))βM,j j = 0, ..., N γτM,j j = 0, N

η = −1 αi,0ω
η
0 |∇η|−1

i,0 + (1 + γ(ci − 1))βi,0 i = 0, ...,M γτi,0 i = 0,M

η = +1 αi,Nωη
N |∇η|−1

i,N + (1 + γ(ci − 1))βi,N i = 0, ...,M γτi,N i = 0,M

2.3.2. Interface boundary condition

We now discuss a way of imposing materials boundary conditions. Without losing generality we consider

two attached domains Ω(1) and Ω(2) as shown in Fig. 4. Consider u(ν) for ν = 1, 2 satisfying the IBVP

ü(ν)(x, t) = a(ν)∇ ·
(
b(ν)(x)∇u(ν)(x, t)

)
, x ∈ Ω(ν), t > 0, (26a)

u(ν)(x, 0) = f (ν)(x), u̇(ν)(x, 0) = h(ν)(x), x ∈ Ω(ν), (26b)

B(ν)u(ν) = α(ν)u(ν) + β(ν)n · ∇u(ν) = g(ν)(t), x ∈ ∂ΩG, t > 0, (26c)

u(1) = u(2), n(I) · (b(1)∇u(1)) = n(I) · (b(2)∇u(2)), x ∈ ∂ΩI , t > 0, (26d)

where ∂ΩG is the boundary of the global domain
⋃2

ν=1 Ω
(ν), n is the unit normal vector function on ∂ΩG,

∂ΩI is the interface
⋂2

ν=1 Ω
(ν), and n is the unit normal vector function on ∂ΩI . For simplicity we assume

a homogeneous Neumann boundary condition applied at the global domain boundary. The IBVP has an

energy estimate

2∑

ν=1

∫

Ω(ν)

(u̇(ν))2

a(ν)
+ b(ν)|∇u(ν)|2 dx =

2∑

ν=1

∫

Ω(ν)

(h(ν))2

a(ν)
+ b(ν)|∇f (ν)|2 dx.
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Figure 4: Two attached quadrilateral domains

For each domain we can follow the single domain formulation to construct the scheme shown previously.

Here we present the numerical scheme with interface boundary conditions imposed through the penalty

methodology. As in the one-dimensional scheme we can define Robin-type boundary operators and the

associated boundary conditions along the interface separating two domains. The expressions are

on Ω(1) side, B(1)u(1) = u(1) + β(1)n(1) · (b(1)∇u(1)), g(1) = u(2) + β(1)n(1) · (b(2)∇u(2)),

on Ω(2) side, B(2)u(2) = u(2) + β(2)n(2) · (b(2)∇u(2)), g(2) = u(1) + β(2)n(2) · (b(1)∇u(1)),

where n(1) and n(2) are unit vectors normal to the interface and outward pointing from Ω(1) and Ω(2),

respectively, and β(1) and β(2) are positive parameters whose values will be determined later in the stability

analysis.

For ν = 1, 2 we seek numerical solutions v(ν) of the form

v(ν)(ξ(ν), η(ν), t) =

M(ν)∑

i=0

N∑

j=0

L
(ν)
i,j (ξ

(ν), η(ν))v
(ν)
i,j (t),

where L
(ν)
i,j (ξ

(ν), η(ν)) are the Lagrange basis polynomials and v
(ν)
i,j (t) are field values, defined on Ω(ν). We

require v(ν) to satisfy the collocation equations:

J (ν)v̈(ν)

a(ν)

∣∣∣
i,j

=
∂
(
b(ν)J (ν)∇ξ(ν) · F (ν)

)

∂ξ(ν)

∣∣∣
i,j

+
∂
(
b(ν)J (ν)∇η(ν) · F (ν)

)

∂η(ν)

∣∣∣
i,j

+ q
(ν)
i,j ,

0 ≤ i ≤ M (ν)

0 ≤ j ≤ N
(27a)

17



v
(ν)
i,j (0) = f

(ν)
i,j , v̇

(ν)
i,j (0) = h

(ν)
i,j , 0 ≤ i ≤ M (ν), 0 ≤ j ≤ N, (27b)

where

F
(ν)
i,j = ∇v

(ν)
i,j − p

(ν)
i,j , (27c)

with p
(ν)
i,j and q

(ν)
i,j being the pointwise values of the penalized interface boundary conditions. The explicit

forms of p(ν)(ξ, η) and q(ν)(ξ, η) are given as

p(1)(ξ(1), η(1)) =

N∑

j′=0

L
(1)

M(1),j′

(
ξ(1), η(1)

)
τ
(1)

M(1),j′
n

(1)

M(1),j′
δv

(1)

M(1),j′

p(2)(ξ(2), η(2)) =

N∑

j′=0

L
(2)
0,j′

(
ξ(2), η(2)

)
τ
(2)
0,j′n

(2)
0,j′δv

(2)
0,j′

q(1)(ξ(1), η(1)) =−
L
(1)

M(1),0
(ξ(1), η(1))

ωξ
M(1)

σ
(1)

M(1) ,0

(
b(1)J (1)|∇ξ(1)|(δv(1))

)
|M(1),0

−
L
(1)

M(1),N
(ξ(1), η(1))

ωξ

M(1)

σ
(1)

M(1),N

(
b(1)J (1)|∇ξ(1)|(δv(1))

)
|M(1),N ,

q(2)(ξ(2), η(2)) =−
L
(2)
0,0(ξ

(2), η(2))

ωξ
0

σ
(2)
0,0

(
b(2)J (2)|∇ξ(2)|(δv(2))

)
|0,0

−
L
(2)
0,N(ξ(2), η(2))

ωξ
0

σ
(2)
0,N

(
b(2)J (2)|∇ξ(2)|(δv(2))

)
|0,N

with

δv
(1)

M(1),j′
=
[
(v

(1)

M(1) ,j′
− v

(2)
0,j′ ) + (β(1)n(1))|M(1),j′ · ((b(1)∇v(1))|M(1),j′ − (b(2)∇v(2))|0,j′ )

]

δv
(2)
0,j′ =

[
(v

(2)
0,j′ − v

(1)

M(1),j′
) + (β(2)n(2))|0,j′ · ((b(2)∇v(2))|0,j′ − (b(1)∇v(1)|M(1),j′)

]
.

We now conduct an energy estimate to determine the pointwise values of β(ν), τ (ν), and σ(ν) on the

interface. Multiplying (J (ν)v̇(ν)ω(ν))|i,j to Eqs. (27), summing the resultants, invoking the quadrature rule

of integration, and doing tedious calculations, we obtain an energy estimate

Ė =

N∑

j=0

ωE
j J

E2ṙTj M jrj ,

where E is the energy given as

E =

2∑

ν=1




M(ν)∑

i=0

Nη∑

j=0

ω
(ν)
i,j

J (ν)(v̇(ν))2

a(ν)

∣∣∣
i,j

+

M(ν)
−1∑

i=1

N−1∑

j=1

ω
(ν)
i,j (b

(ν)∇v(ν) · ∇v(ν))
∣∣∣
i,j


 .

Here, ωE
j = ωη

j , J
E
j = (J (1)|∇ξ(1)|)|M(1),j = (J (2)|∇ξ(2)|)|0,j , rj are vectors defined as

rj =

[
v
(1)

M(1),j
, v

(2)
0,j ,

(
b(1)

∂v(1)

∂n

) ∣∣∣
M(1),j

, −
(
b(2)

∂v(2)

∂n

) ∣∣∣
0,j

,
(
b(1)|∇sv

(1)|
) ∣∣∣

M(1),j
,
(
b(2)|∇sv

(2)|
) ∣∣∣

0,j

]T
,
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and M j are 6× 6 matrices of the form

M j =



 MU 0

0T ML





with 0 denoting the 4× 2 zero matrix, ML = diag
(
−ω̄

(1)

M(1),j
/(b(1)cj),−ω̄

(2)
0,j/(b

(2)cj)
)
, and

MU =




−τ̃ (1)b(1)|M(1),j τ̃ (1)b(1)|M(1),j 1− τ̃ (1)β(1)b(1)|M(1),j τ̃ (1)β(1)b(1)|M(1),j

τ̃ (2)b(2)|0,j −τ̃ (2)b(2)|0,j −τ̃ (2)β(2)b(2)|0,j −(1− τ̃ (2)β(2)b(2)|0,j)
τ (1)ω̄(1)|M(1),j −τ (1)ω̄(1)|M(1),j −(1/(cb(1))− τ (1)β(1))ω̄(1)|M(1),j −τ (1)ω̄(1)β(1)|M(1),j

τ (2)ω̄(2)|0,j −τ (2)ω̄(2)|0,j −τ (2)β(2)ω̄(2)|0,j −(1/(cb(2))− τ (2)β(2))ω̄(2)|0,j



,

τ̃ (ν) = τ (ν) + σ(ν), ω̄
(1)

M(1),j
=

2

M (1)(M (1) + 1)|∇ξ(1)|M(1),j

, ω̄
(2)
0,j =

2

M (2)(M (2) + 1)|∇ξ(2)|0,j
.

For stability we need to choose the values of τ (ν), σ(ν), and β(ν) such that for each j the matrix M j is

symmetric semi-negative definite. Since ML is diagonal and negative definite, it is sufficient to choose the

parameters such that MU is symmetric semi-negative definite. Notice that for each j, MU and the matrix

M in Eq. (19) are of the same form. Hence, to make MU symmetric semi-negative definite, we take

β
(1)

M(1),j
=

ω̄(2)

(1 + γ(c− 1))b(2)

∣∣∣
M(1),j

, τ
(1)

M(1),j
=

b(2)

b(2)ω̄(1) + b(1)ω̄(2)

∣∣∣
M(1),j

, σ
(1)

M(1) ,j
= γ(c− 1)τ

(1)

M(1),j
,

(28a)

β
(2)
0,j =

ω̄(1)

(1 + γ(c− 1))b(1)

∣∣∣
0,j

, τ
(2)
0,j =

b(1)

b(2)ω̄(1) + b(1)ω̄(2)

∣∣∣
0,j

, σ
(2)
0,j = γ(c− 1)τ (2)

∣∣∣
0,j

(28b)

with γ ≥ 1.

In the above formulation the edges on the two quadrilaterals are described by the equations ξ(ν) = ±1

and η(ν) = ±1 for ν = 1, 2, and the interface is described by ξ(1) = 1 and ξ(2) = −1. We have shown how

to determine the values of the associated parameters τ , σ, and β at the interface grid points such that the

scheme is stable. For an interface described by other edges of the two domains, one can follow a similar

approach to determine the values of the associated parameters needed to ensure stable computations.

2.4. Time integration

To march numerical solutions in time, we adopt the RKN method [34] which is fourth-order accurate.

Denote the time step by ∆t and the nth time level by tn = n∆t. Let vn be the numerical solution at time tn.

The RKN method for a second-order differential equation of the form v̈ = F(t, v, v̇) involves the following

steps:
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Intermediate steps:

K1 = F (tn, vn, v̇n) , (29a)

K2 = F
(
tn +

∆t

2
, vn +

∆t

2
v̇n +

(∆t)2

8
K1, v̇

n +
∆t

2
K1

)
, (29b)

K3 = F
(
tn +

∆t

2
, vn +

∆t

2
v̇n +

(∆t)2

8
K1, v̇

n +
∆t

2
K2

)
, (29c)

K4 = F
(
tn +∆t, vn +∆tv̇n +

(∆t)2

2
K3, v̇

n +∆tK3

)
, (29d)

Update step:

vn+1 = vn +∆t

(
v̇n +

∆t

6
(K1 +K2 +K3)

)
, v̇n+1 = v̇n +

∆t

6
(K1 + 2K2 + 2K3 +K4). (29e)

Notice that the wave equation considered in the present study does not involve v̇. Thus, we have K3 = K2

in the RKN method to simplify computations.

If the imposed boundary condition g(t) is an explicit time-dependent function, then special treatments

are needed to avoid order reduction of the RKN method. The reason is that the explicit time function intro-

duced to the scheme leads to an inaccurate approximation at the final update step. To recover the correct

convergence rate of the present method, we follow a similar analysis shown in [5] and obtain approximations

of g(t) at the intermediate time levels tn +∆t/2 and tn +∆t by g(tn) and the derivatives of g(tn) as

g

(
tn +

∆t

2

)
≈ g(tn) +

∆t

2
g′(tn) +

(∆t)2

8
g′′(tn), (30a)

g (tn +∆t) ≈ g(tn) + ∆tg′(tn) +
(∆t)2

2
g′′(tn) +

(∆t)3

4
g′′′(tn) +

(∆t)4

16
g′′′′(tn), (30b)

where ′ denotes the differentiation with respect to the time variable t.

A formula for adaptively computing the time step, which has taken the grid distortion into account, was

given in [20] for multidomain pseudospectral wave simulations. For the present study we modify the formula

and compute the time step ∆t as follows:

∆t = CFL× min
x∈Ω

(√
a(x)b(x)|χ|

)−1

, χ = |∇ξ|/∆ξi + |∇η|/∆ηj ,

where CFL is designated as the Courant-Friedrichs-Lewy number, (a(x)b(x))1/2 is the local wave speed,

χ is the local grid distortion vector, ∆ξi and ∆ηj represent the local grid sizes, and |∇ξ| and |∇η| in this

particular notation are given by

|∇ξ| =
(∣∣∣∣

∂ξ

∂x

∣∣∣∣ ,
∣∣∣∣
∂ξ

∂y

∣∣∣∣
)
, |∇η| =

(∣∣∣∣
∂η

∂x

∣∣∣∣ ,
∣∣∣∣
∂η

∂y

∣∣∣∣
)
.

In this study we use CFL ≤ 0.6 for stable computations after a series of numerical tests.
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3. Numerical Results

3.1. Error and convergence rate

We have conducted a series of numerical experiments based on the present methods. For each compu-

tation we measure the maximum error defined as e(N) = ||u − uN ||∞, where u is the exact solution and

uN is the numerical solution corresponding to polynomial degree N . The convergence order denoted by q is

calculated as

q =
1

2

log(e(N1)/e(N2))

log(N2/N1)
,

where the extra factor 1/2 results from the minimum grid point size, which scales like 1/N2. In this section

we provide one- and two-dimensional computational results of the experiments.

Example 1. Let I = [−1, 1]. Consider u(x, t) = sin(1.5π(x− t)) satisfying following the problem:

ü(x, t) = u′′(x, t), x ∈ I, t > 0,

u(x, 0) = sin(1.5πx), u̇(x, 0) = −1.5π cos(1.5πx), x ∈ I,

BLu(−1, t) = αL sin(1.5π(−1− t))− βL(1.5π) cos(1.5π(−1− t)), t > 0,

BRu(+1, t) = αR sin(1.5π(+1− t)) + βR(1.5π) cos(1.5π(+1− t)), t > 0.

Our first experiment examines the convergence property of the scheme with boundary conditions imposed

at the RKN intermediate stage. We numerically solve the problem with and without applying Eqs. (30a)–

(30b) at the intermediate stages. Results of the convergence study are presented in Table 2. We observe

order reduction of the RKN method if the scheme is without correction at the intermediate stages. If the

modification is made at the intermediate stages, then the correct convergence order is recovered.

Table 2: Convergence study results of the scheme with and without correction at the RKN intermediate stages for Example 1.

T=1.25. αL = 1, βL = 0, αR = 1, βR = 0

N
Without Modification With Modification

e(N) q e(N) q

12 2.0285e-03 - 1.7045e-03 -

16 9.4277e-05 5.33 2.5561e-06 11.3

20 4.1925e-05 1.81 3.7849e-07 4.27

24 1.9125e-05 2.15 8.8487e-08 3.98

28 1.0223e-05 2.03 2.5880e-08 3.98

Tables 3–5 present convergence study results of the method solving the problem subject to different types

of boundary conditions applied at x = ±1. It is shown that for each terminal time T the error decays as N
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increases and the convergence rate is of fourth order. Moreover, we observe that for a fixed grid resolution

N the error increases approximately linearly in time, indicating that the scheme is also time stable.

Table 3: Convergence study for Example 1 at different terminal times. αL = 1, βL = 0, αR = 1, βR = 0.

N
T = 1 T = 10 T = 100

e(N) q e(N) q e(N) q

12 1.4470e-03 - 1.1860e-02 - 1.1752e-01 -

16 1.1732e-05 8.36 1.8494e-04 7.23 1.6699e-03 7.39

20 1.9744e-06 3.99 3.1507e-05 3.96 2.7914e-04 4.00

24 4.6719e-07 3.95 7.3324e-06 3.99 6.5020e-05 3.99

Table 4: Convergence study for Example 1 at different terminal times. αL = 1, βL = 0, αR = 0, βR = 1.

N
T = 1 T = 10 T = 100

e(N) q e(N) q e(N) q

12 1.4363e-03 - 1.1808e-02 - 1.1736e-01 -

16 3.6827e-05 6.36 1.1135e-05 12.1 1.0532e-04 12.2

20 6.1740e-06 4.00 8.9822e-07 5.64 9.4168e-06 5.41

24 1.4398e-06 3.99 2.3073e-07 3.72 2.1910e-06 3.99

Table 5: Convergence study for Example 1 at different terminal times. αL = 1, βL = 0, αR = 1, βR = 0.5

N
T = 1 T = 10 T = 100

e(N) q e(N) q e(N) q

12 1.4349e-03 - 1.1819e-02 - 1.1742e-01 -

16 2.7994e-05 6.84 4.6733e-05 9.61 1.0524e-04 12.2

20 4.6969e-06 3.99 7.5846e-06 4.07 3.0923e-06 7.90

24 1.0848e-06 4.01 1.7765e-06 3.98 7.4317e-07 3.91
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3.2. hp-convergence

Example 2. Let Ω = [−1, 1]2. Consider u = sin(π(x + y −
√
2t)) satisfying the IBVP:

ü(x, y, t) = ∇2u(x, y, t), (x, y) ∈ Ω, t ≥ 0

u(x, y, 0) = sin(π(x + y)), u̇(x, y, 0) = −
√
2π cos(π(x + y)), (x, y) ∈ Ω,

u(±1, y, t) = sin(π(±1 + y −
√
2t), y ∈ [−1, 1], t > 0

u(x,±1, t) = sin(π(x ± 1−
√
2t), x ∈ [−1, 1], t > 0.

We use structural and unstructured multidomain meshes (see Figs. 5(a)–5(d)) to simulate wave prop-

agations. For a given mesh the grid resolutions N and M within each element are set equal. A Dirichlet

boundary condition is assigned on a subdomain edge if it is a piece of the global domain boundary. To patch

field values between elements, we assign continuous interface conditions at these domain edges.

Convergence study results are given in Table 6. For the computations based on a structural mesh we

observe p-convergence as the grid resolution N increases, and the convergence rate is of fourth order. While

the total number of domains increases for a constant N , we see h-convergence. For the computations based

on the unstructured mesh we observe exponential convergence. This rapid convergence is due to the fact that

distorted subdomains lead to a smaller time step and the error is dominated by the spatial approximation.

Wave field profiles computed by the present methods are shown in Fig. 6.

Table 6: Convergence study results for Example 2 at T = 10. The computational meshes are shown in Fig. 5(a-d). γ = 1 for

computations based on structural meshes and γ = 1.2 for computations based on the unstructured mesh.

N
1 Domain 4 Domains 16 Domains 9 Domains

e(N) q e(N) q e(N) q e(N) q

8 3.2601e-03 - 3.2713e-05 - 8.2056e-07 - 3.5017e-04 -

12 9.3474e-06 7.21 5.1471e-07 5.12 3.2102e-08 3.99 5.8834e-08 10.71

16 8.8419e-07 4.09 5.6301e-08 3.84 3.5116e-09 3.84 7.1608e-10 7.66

20 1.5723e-07 3.86 9.9412e-09 3.88 6.1744e-10 3.89 1.3077e-10 3.81

Here we address an issue related to the penalty strength parameter γ. In this example we use γ = 1 for

computations based on the structural meshes, and we use γ = 1.2 for computations based on the unstructured

mesh because of numerical instability. In Fig. 7 we present the error histories for the computations based on

the unstructured mesh with different values of γ. The results show that the computations are unstable for

γ = 1.0 and γ = 1.1 and that the computation becomes stable for γ = 1.2. These results are consistent with

the theoretical analysis since increasing the value of γ increases the dissipation in the scheme. Although the

penalty strength parameter plays a role in suppressing the instability, we note that the stability condition γ ≥
23
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Figure 5: Structural meshes composed of 1 domain (a), 4 subdomains (b), and 16 subdomains (c). Unstructured mesh composed

of 9 subdomains (d).

1 obtained from the analysis shown in Section 2 is only a necessary condition but not sufficient. Hence, the

numerical instabilities due to severe grid distortions may not be eliminated completely by simply increasing

the value of γ. In this situation a possible way to suppress the instability is to introduce more dissipation

to the scheme through filtering. This approach has been widely used in pseudospectral computations for

partial differential equations. Since the filtering issue is beyond the scope of this study, we refer the reader

to [23] for further details.
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Figure 6: Wave fields computed by the present method for Example 2 based on the 16-domain structural mesh (see Fig. 5(c))

and the unstructured 9-domain mesh (see Fig. 5(d)).
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Figure 7: Error history for Example 2 based on the unstructured mesh shown in Fig. 6 with grid resolutions M = N = 16, for

γ = 1.0, 1, 1 and 1.2.

3.3. Problem involving material discontinuity

Example 3. Let Ω(1) = [−1, 0]× [−1, 1], Ω(2) = [0, 1]× [−1, 1] and Ω = [−1, 1]2. We consider the following

problem:

ü(1)(x, y, t) =
1

2
∇2u(1)(x, y, t), (x, y) ∈ Ω(1), t > 0

ü(2)(x, y, t) =
1

5
∇2u(2)(x, y, t), (x, y) ∈ Ω(2), t > 0

u(1)(x, y, 0) = sin(πx) sin(πy), u̇(1)(x, y, 0) = 0, (x, y) ∈ Ω(1),

u(2)(x, y, 0) =

√
5

8
sin(2πx) sin(πy), u̇(2)(x, y, 0) = 0, (x, y) ∈ Ω(2),
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u(1)(x, y, t) = u(2)(x, y, t) = 0, (x, y) ∈ ∂Ω, t > 0

u(1)(0, y, t) = u(2)(0, y, t),
1√
2

∂u(1)(0, y, t)

∂x
=

1√
5

∂u(2)(0, y, t)

∂x
, y ∈ [−1, 1], t > 0,

where ∂Ω denotes the domain boundary of the global domain Ω.

The analytic forms of u(1) and u(2) are

u(1)(x, y, t) = sin(πx) sin(πy) cos(πt), u(2)(x, y, t) =

√
5

8
sin(2πx) sin(πy) cos(πt).

To solve the problem, we decompose the domain [−1, 1]2 into four equal-sized squares as shown in Fig. 5(b).

At adjacent subdomain edges we enforce continuous interface boundary conditions for patching field values.

Table 7 presents results of a grid convergence study. For each terminal time T (T = 1, 10, 100) we see that

as N increases, the error rapidly decays and the convergence rate gradually recovers a fourth order. This

numerical experiment shows that the penalized interface boundary conditions do effectively patch the field

values in between subdomains even for discontinuous material coefficients at interfaces. For completeness

we illustrate the computed field plot at T = 1 in Fig. 8.

Table 7: Convergence study results for Example 3 at different terminal times.

N
T = 1 T = 10 T = 100

e(N) q e(N) q e(N) q

8 9.4735e-04 1.6679e-03 1.5173e-03

10 3.9624e-05 7.11 3.4855e-05 8.66 4.4049e-05 7.93

12 4.4145e-07 12.33 5.7483e-07 11.25 3.2956e-07 13.42

14 7.3508e-09 13.22 7.3004e-09 14.16 2.0455e-08 9.01

16 6.1655e-11 17.99 5.6466e-10 9.58 5.6832e-09 4.79

3.4. Curvilinear domain problems

The preceding examples were based on meshes composed of straight-sided domains. We now provide

convergence studies of our method for simulating waves involving curvilinear domains.

3.4.1. Waves in a circular disk

Example 4. Let Ω = {(r, θ)|0 ≤ r ≤ 2, 0 ≤ θ ≤ 2π}, and consider u(r, θ, t) satisfying the following problem:

ü(r, θ, t) = ∇2u(r, θ, t), (r, θ) ∈ Ω, t > 0,

u(r, θ, 0) = J3(krr) cos(3θ), u̇(r, θ, 0) = krJ3(krr) sin(3θ), (r, θ) ∈ Ω,

u(2, θ, t) = 0, 0 ≤ θ ≤ 2π, t > 0,
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Figure 8: Color contour (left) 3D field (right) plots of the simulated wave fields, u(1) and u(2) in Example 3, at T = 1.

where J3 is the third-order Bessel function of the first kind.

The exact solution to the problem is given as

u(r, θ, t) = J3(krr) cos(3θ − krt), kr = 3.190080947961992.

A mesh composed of twelve domains as shown in Fig. 9, with some subdomains being curvilinear, is used

for computations. The convergence study results are given in Table 8. We observe that for each terminal

time the error vanishes rapidly as the degree of the approximation polynomial increases.

In this example we use γ = 1.2 for computations because of numerical instability. In Fig. 10 we present

the error histories for the computations with different values of γ. The results show that the computations

are unstable for γ = 1.0 and γ = 1.1 and that the computation becomes stable for γ = 1.2.

Table 8: Convergence study results for Example 4. The terminal time T is expressed in terms of the fundamental period in

time p = 1.9696000586842051.

N
T = 1p T = 10p T = 100p

e(N) q e(N) q e(N) q

8 6.6186e-05 - 2.7843e-04 - 4.6362e-04 -

10 1.5325e-06 8.43 2.6015e-06 10.47 7.3705e-06 9.28

12 2.5946e-08 11.18 1.5916e-08 13.97 1.0749e-07 11.59

14 4.2829e-10 13.31 1.0327e-09 8.87 1.0168e-08 7.64

16 3.5059e-11 9.37 3.4481e-10 4.10 3.4526e-09 4.04
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Figure 9: Multidomain mesh for waves in a circular domain (top left), contour field plot of a wave (bottom left), and 3D field

plot of a wave in the circular domain (right).
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Figure 10: Error history for Example 4 based on the mesh shown in Fig. 9 with grid resolutions M = N = 8.

28



3.4.2. Waves in a ring waveguide

Our fifth experiment involves simulating a wave in a ring waveguide.

Example 5. Consider the regions Ω(1) = {(r, θ)|2 ≤ r ≤ 2.5, 0 ≤ θ ≤ 2π} and Ω(2) = {(r, θ)|2.5 ≤ r ≤
3.0, 0 ≤ θ ≤ 2π}. Within Ω(1) the coefficients are a(1) = b(1) = 0.5, and within Ω(2) the coefficients are

a(2) = b(2) = 5. We consider wave functions u(ν)(r, θ, t) for ν = 1, 2 satisfying the IBVP:

ü(ν) = a(ν)∇ · (b(ν)∇u(ν)), (r, θ) ∈ Ω(ν), t > 0,

u(ν) = (A(ν)J8(k
(ν)r) +B(ν)Y8(k

(ν)r)) cos(8θ), (r, θ) ∈ Ω(ν), t = 0,

u̇(ν) = k(ν)
√
a(ν)b(ν)(A(ν)J8(k

(ν)r) +B(ν)Y8(k
(ν)r)) sin(8θ) (r, θ) ∈ Ω(ν), t = 0,

u(1)(2, θ, t) = u(2)(3, θ, t) = 0, θ ∈ (0, 2π), t > 0,

u(1)(2.5, θ, t) = u(2)(2.5, θ, t), θ ∈ (0, 2π), t > 0,

n · (b(1)∇u(1)(2.5, θ, t)− b(2)∇u(2)(2.5, θ, t)) = 0, θ ∈ (0, 2π), t > 0,

where J8 and Y8 are the eighth-order Bessel functions of the first and the second kinds, respectively.

The solutions u(ν) for ν = 1, 2 are given as

u(ν) =
(
A(ν)J8(k

(ν)r) +B(ν)Y8(k
(ν)r)

)
cos
(
8θ − k(ν)

√
a(ν)b(ν)t

)
(31)

with parameters provided in Table 9.

Table 9: Parameters used is Eq. (31)

ν k(ν) A(ν) B(ν)

1 6.91653857590121 -0.000933627891442 -0.003076893577698

2 0.69165385759012 -0.999994830519074 -0.000000021132401

We use a computational mesh composed of sixteen domains as shown in Fig. 11. The results of the

convergence study are provided in Table 10. Onc can clearly see that for each terminal time T the error

decays as the grid resolutions increase. Notice that for this problem the wave functions u(1) and u(2) are

continuous at the interface but the derivatives of them along the direction normal to the interface are

discontinuous. A snapshot of the computed field provided in Fig. 11 illustrates this feature at the interface

r = 2.5.

4. Concluding Remarks

In this study we proposed a high-order accurate numerical scheme for solving the second-order wave

equation in curvilinear coordinates. The scheme is based on a Legendre pseudospectral penalty method in
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Table 10: Convergence study results for Example 5. The terminal time T is measured in terms of the fundamental period in

time p = 1.816858313802119. Nr and Nθ are grid resolutions in radial and azimuthal direction within each subdomain. γ = 1.1

T = 1p T = 10p T = 100p

Nr Nθ e(N) q e(N) q e(N) q

6 9 1.5774e-03 - 1.7655e-03 - 1.5774e-03 -

8 12 2.3758e-05 7.29 2.4378e-05 7.44 2.3758e-05 7.29

10 15 1.2321e-07 11.79 1.2443e-07 11.82 1.2321e-07 11.79

12 18 2.8065e-09 10.37 3.4813e-09 9.80 2.8065e-09 10.37
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Figure 11: Left: Multidomain mesh for simulating waves in a ring waveguide. Right: Computed wave field at T = 10p.

space and a Runge-Kutta-Nyström method in time. To ensure stable computations, we conducted discrete

energy estimates in order to determine suitable penalty parameters for problems subject to different types

of boundary conditions. In addition, we propose an accuracy-consistent approach for imposing boundary

conditions at the RKN intermediate stages to avoid accuracy order reduction. To validate the method, we

conducted numerical experiments for various problems, and we observe the expected convergence rate.

The present method is for the scalar wave equation. We plan to extend the method for systems of wave

equations in second-order forms such as vectorial wave equations resulting from raising the order of the

Maxwell equations in electromagnetic or the elastic wave equations.
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